Exercise 4

Verify that each of the two numbers $z=1 \pm i$ satisfies the equation $z^{2}-2 z+2=0$.

Solution

Substitute the two numbers into the equation and check that the equation is satisfied. Check $z=1+i$ first.

$$
\begin{aligned}
0 & \stackrel{?}{=}(1+i)^{2}-2(1+i)+2 \\
& \stackrel{?}{=}\left(1+2 i+i^{2}\right)-(2+2 i)+2 \\
& \stackrel{?}{=} 1+2 i-1-2-2 i+2 \\
& \stackrel{?}{=} 0+0 i \\
& =0
\end{aligned}
$$

$z=1+i$ is indeed a solution of the equation. Check $z=1-i$ now.

$$
\begin{aligned}
0 & \stackrel{?}{=}(1-i)^{2}-2(1-i)+2 \\
& \stackrel{?}{=}\left(1-2 i+i^{2}\right)-(2-2 i)+2 \\
& \stackrel{?}{=} 1-2 i-1-2+2 i+2 \\
& \stackrel{?}{=} 0+0 i \\
& =0
\end{aligned}
$$

$z=1-i$ is indeed a solution of the equation.

